19 research outputs found

    Co-compact Gabor systems on locally compact abelian groups

    Full text link
    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characterization results via the Zak transform. From these results we derive non-existence results for critically sampled continuous Gabor frames. We obtain general characterizations in time and in frequency domain of when two Gabor generators yield dual frames. Moreover, we prove the Walnut and Janssen representation of the Gabor frame operator and consider the Wexler-Raz biorthogonality relations for dual generators. Finally, we prove the duality principle for Gabor frames. Unlike most duality results on Gabor systems, we do not rely on the fact that the translation and modulation groups are discrete and co-compact subgroups. Our results only rely on the assumption that either one of the translation and modulation group (in some cases both) are co-compact subgroups of the time and frequency domain. This presentation offers a unified approach to the study of continuous and the discrete Gabor frames.Comment: Paper (v2) shortened. To appear in J. Fourier Anal. App

    Density and duality theorems for regular Gabor frames

    Full text link
    We investigate Gabor frames on locally compact abelian groups with time-frequency shifts along non-separable, closed subgroups of the phase space. Density theorems in Gabor analysis state necessary conditions for a Gabor system to be a frame or a Riesz basis, formulated only in terms of the index subgroup. In the classical results the subgroup is assumed to be discrete. We prove density theorems for general closed subgroups of the phase space, where the necessary conditions are given in terms of the "size" of the subgroup. From these density results we are able to extend the classical Wexler-Raz biorthogonal relations and the duality principle in Gabor analysis to Gabor systems with time-frequency shifts along non-separable, closed subgroups of the phase space. Even in the euclidean setting, our results are new

    Reproducing formulas for generalized translation invariant systems on locally compact abelian groups

    Get PDF
    In this paper we connect the well established discrete frame theory of generalized shift invariant systems to a continuous frame theory. To do so, we let Γj\Gamma_j, j∈Jj \in J, be a countable family of closed, co-compact subgroups of a second countable locally compact abelian group GG and study systems of the form ∪j∈J{gj,p(⋅−γ)}γ∈Γj,p∈Pj\cup_{j \in J}\{g_{j,p}(\cdot - \gamma)\}_{\gamma \in \Gamma_j, p \in P_j} with generators gj,pg_{j,p} in L2(G)L^2(G) and with each PjP_j being a countable or an uncountable index set. We refer to systems of this form as generalized translation invariant (GTI) systems. Many of the familiar transforms, e.g., the wavelet, shearlet and Gabor transform, both their discrete and continuous variants, are GTI systems. Under a technical α\alpha local integrability condition (α\alpha-LIC) we characterize when GTI systems constitute tight and dual frames that yield reproducing formulas for L2(G)L^2(G). This generalizes results on generalized shift invariant systems, where each PjP_j is assumed to be countable and each Γj\Gamma_j is a uniform lattice in GG, to the case of uncountably many generators and (not necessarily discrete) closed, co-compact subgroups. Furthermore, even in the case of uniform lattices Γj\Gamma_j, our characterizations improve known results since the class of GTI systems satisfying the α\alpha-LIC is strictly larger than the class of GTI systems satisfying the previously used local integrability condition. As an application of our characterization results, we obtain new characterizations of translation invariant continuous frames and Gabor frames for L2(G)L^2(G). In addition, we will see that the admissibility conditions for the continuous and discrete wavelet and Gabor transform in L2(Rn)L^2(\mathbb{R}^n) are special cases of the same general characterizing equations.Comment: Minor changes (v2). To appear in Trans. Amer. Math. So

    Gabor frames on locally compact abelian groups and related topics

    Get PDF

    Sampling and periodization of generators of Heisenberg modules

    Full text link
    This paper considers generators of Heisenberg modules in the case of twisted group C∗C^*-algebras of closed subgroups of locally compact abelian groups and how the restrction and/or periodization of these generators yield generators for other Heisenberg modules. Since generators of Heisenberg modules are exactly the generators of (multi-window) Gabor frames, our methods are going to be from Gabor analy\-sis. In the latter setting the procedure of restriction and periodization of generators is well known. Our results extend this established part of Gabor analy\-sis to the general setting of locally compact abelian groups. We give several concrete examples where we demonstrate some of the consequences of our results. Finally, we show that vector bundles over an irrational noncommutative torus may be approximated by vector bundles for finite-dimensional matrix algebras that converge to the irrational noncommutative torus with respect to the module norm of the generators, where the matrix algebras converge in the quantum Gromov-Hausdorff distance to the irrational noncommutative torus

    A characterization of tight and dual generalized translation invariant frames

    Get PDF

    On Wilson bases in L2(Rd)L^2(\mathbb{R}^d)

    Get PDF

    Sampling and periodization of generators of Heisenberg modules

    No full text
    This paper considers generators of Heisenberg modules in the case of twisted group C∗-algebras of closed subgroups of locally compact abelian (LCA) groups and how the restriction and/or periodization of these generators yield generators for other Heisenberg modules. Since generators of Heisenberg modules are exactly the generators of (multi-window) Gabor frames, our methods are going to be from Gabor analysis. In the latter setting, the procedure of restriction and periodization of generators is well known. Our results extend this established part of Gabor analysis to the general setting of LCA groups. We give several concrete examples where we demonstrate some of the consequences of our results. Finally, we show that vector bundles over an irrational noncommutative torus may be approximated by vector bundles for finite-dimensional matrix algebras that converge to the irrational noncommutative torus with respect to the module norm of the generators, where the matrix algebras converge in the quantum Gromov–Hausdorff distance to the irrational noncommutative torus
    corecore